

CATÁLOGO AMORTIGUADORES

EMA Spring S.A. de C.V.

Residencial Ángeles C.P 76178 Querétaro, México.

(+52) 442-571-2936

(+52) 442 501-5190

www.ema-spring.com

En **EMA Spring** contamos con personal técnico capacitado, el cual le brindará una asesoría especializada en nuestros productos, de acuerdo a los requerimientos de su empresa.

Ofrecemos una amplia gama de productos tales como:

- Amortiguadores antivibratorios
- Amortiguadores antisísmicos
- Colgantes de resorte
- Resortes de acero.

Nuestros amortiguadores se fabrican con placas de acero tratado y acero inoxidable Tipo-302, Tipo-304 y Tipo-316 de la más alta calidad para garantizar su durabilidad, confiabilidad y rendimiento óptimo en diversas aplicaciones industriales.

Para los resortes de acero los materiales que utilizamos son:

- Aceros Inoxidables T-302, T-304,T-316
- Aceros Pianos
- Aceros templados al aceite
- Aceros MBI, MBII

Nuestra empresa cuenta con procesos flexibles que nos permiten fabricar desde una pieza hasta altos volúmenes.

Le invitamos a ponerse en contacto con nosotros para obtener mayor información sobre nuestros productos. Tenga la seguridad que *EMA Spring* será su proveedor confiable.

Residencial Ángeles C.P 76178 Querétaro, México.

(+52) 442-571-2936 (+52) 442 501-5190

www.ema-spring.com

DEFINICIÓN, USO Y APLICACIÓN:

Amortiguador antivibratorio o vibroaislador, es un dispositivo o elemento mecánico que su función es disminuir y/o eliminar la vibración y absorber la intensidad de ruido en equipos dinámicos o en funcionamiento.

Las aplicaciones más comunes son en: plantas eléctricas o de emergencia, chillers, compresores de aire, equipos de bombeo, torres de enfriamiento y en general todas aquellas máquinas que por su dinámica de funcionamiento produzcan ruido o vibración.

COMPARATIVO DE AMORTIGUADORES DE NEOPRENO VS AMORTIGUADORES DE RESORTE

Amortiguadores de neopreno:

- Eficiencias del 80% al 85%
- Vencimiento del 8% al 10% al envejecimiento en condiciones normales
- Vida útil promedio de 3 años y en condiciones extremas de 2.5 años (prueba realizada en cámara salina o de envejecimiento prematuro).

Amortiguadores de resorte o vibroaisladores:

- Eficiencias del 95% al 99%
- Vencimiento del 2% al envejecimiento en condiciones normales
- Vida útil promedio de 7 años y en condiciones extremas de 5 años (prueba realizada en cámara salina o de envejecimiento prematuro).

CARACTERÍSTICAS Y VENTAJAS:

A diferencia de otros amortiguadores y/o vibroaisladores, los nuestros están fabricados y diseñados de tal manera que representan mayores beneficios y ventajas como son:

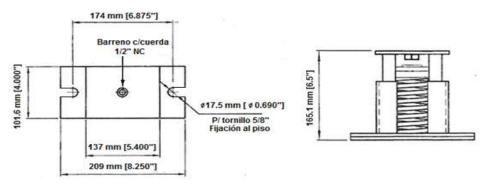
- Fabricados en placas de acero que permiten mayor deflexión que los amortiguadores de fundición, soportando mayores desniveles del piso sin fracturarse
- Construcción compacta y estandarizada en solo 2 modelos de chasis que se adaptan de mejor manera a la mayoría de los espacios y patines de las plantas de emergencia, chillers, bombas y compresores
- Amplia gama de modelos estándar desde los 50 kg. hasta los 3600 kg. y fabricación especial a solicitud del cliente, igualando modelos, capacidades y diseños requeridos
- Productos identificados que permiten una correcta rastreabilidad para el seguimiento de cualquier eventualidad en campo
- La forma de empaque de nuestros amortiguadores evita la pérdida de componentes internos, así como su fácil manejo para su trasportación.

DEFLEXIÓN

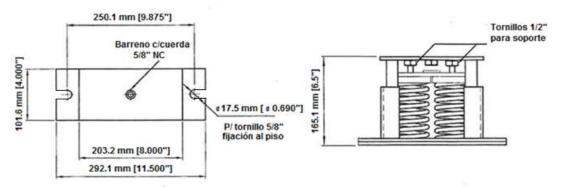
La deflexión es un cambio de altura en el amortiguador antivibratorio, comparando su longitud libre contra su longitud final una vez cargando el equipo a soportar.

La deflexión junto con el peso son los factores más importantes para controlar la vibración y el ruido para la correcta elección del amortiguador.

CLAROS ENTRE PUNTOS DE APOYO


La importancia de los claros o la distancia que debe de existir entre los puntos de apoyo de los diversos equipos a controlar debe de estar en el rango de 0.80 m. a 1.50 m., mayor a esta distancia debemos colocar un nuevo punto de apoyo en la distribución de la base para mejor control del ruido y/o la vibración.

Omitir o suprimir puntos de apoyo (menor número de amortiguadores) disminuye la EFICIENCIA y por ende incrementa sustancialmente el ruido y la vibración a controlar, la cual en niveles óptimos debe conservarse en el rango del 95% al 99%.


Esta omisión cancela la garantía de los vibroaisladores.

DIMENSIONES Y MODELOS DE CHASIS

Chasis sencillo.

Chasis doble.

NOTAS IMPORTANTES:

- AMORTIGUADOR SENCILLO: Este puede contener 1 o 2 resortes
- AMORTIGUADOR DOBLE: Este puede contener 2 o 4 resortes
- Las dimensiones y las figuras aquí mostradas son solo de referencia y estas pueden variar sin previo aviso por *EMA Spring*.

CARGAS Y MODELOS DE LOS AMORTIGUADORES:

La presente tabla muestra los diferentes modelos estándar existentes; sin embargo, tenemos la capacidad de diseñar y fabricar modelos equivalentes al que actualmente el cliente esté utilizando, ya sean nacionales o importados. Por favor, consulte a su asesor, quien le dará la información para el diseño requerido.

Modelo	Capacidad de carga nominal (Kg +/- 10%)	Modelo	Capacidad de carga nominal (Kg +/- 10%)
EMA50S1	50	EMA750S2	750
EMA100S1	100	EMA850S2	850
EMA125S1	125	EMA1000S2	1000
EMA150S1	150	EMA1150D2	1,150
EMA175S1	175	EMA1270D2	1,270
EMA200S1	200	EMA1500D4	1,500
EMA250S1	250	EMA1750D4	1,750
EMA300S1	300	EMA2000D4	2,000
EMA350S1	350	EMA2250D4	2,250
EMA450S1	450	EMA2500D4	2,500
EMA500S1	500	EMA3000D4	3,000
EMA650S1	650	EMA3500D4	3,500

Chasis doble

FORMA CORRECTA DE ELEGIR UN AMORTIGUADOR

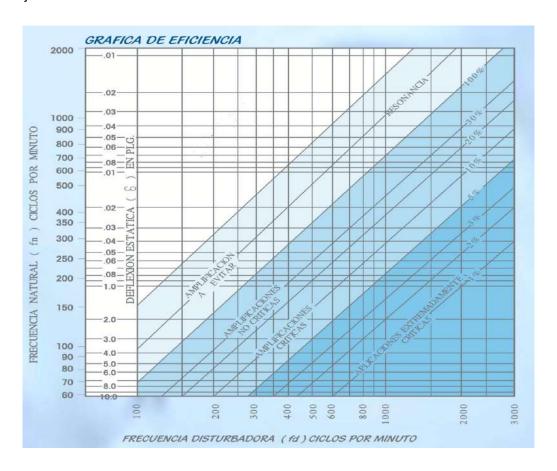
La importancia de elegir correctamente un amortiguador radica en el resultado que se espera obtener para el aislamiento del ruido y la vibración con una eficiencia esperada del 95% al 99%.

Para ello desarrollamos un **ejemplo** con el fin de comprender y hacer una correcta selección de los mismos

Suponemos una planta de emergencia con un peso de 4,700 Kg. Uniformemente repartido, el cual queremos dividirlo en 4 puntos de apoyo, y la misma trabaja a una velocidad de 1,800 RPM y requerimos protegerla de los movimientos de paro y arranque, al igual que aislarla de la vibración con una eficiencia de por lo menos el 90%. Por lo que definimos que su aplicación es crítica. Partimos entonces que 4,700 Kg./4 puntos de apoyo = 1,175 Kg./ apoyo. Por lo que el modelo seleccionado es el EMA-1270D2, pues el mismo tiene un rango de 1,134 a 1,270 k con una deflexión de 28 mm (1.102").

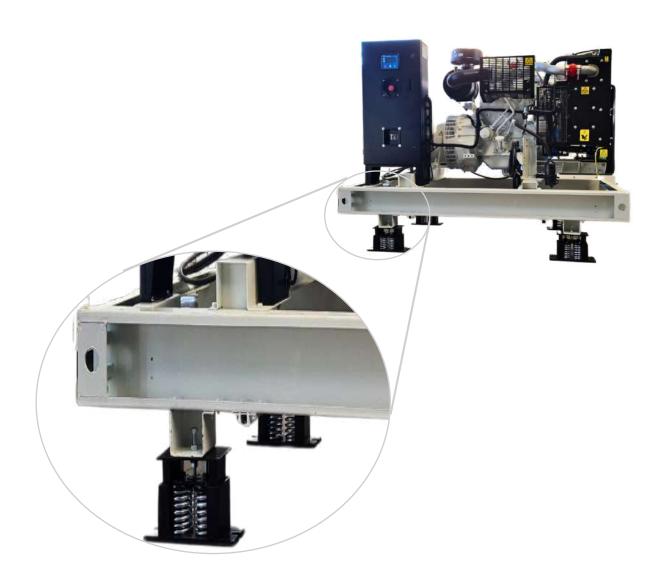
Tomando estos datos y utilizando las RPM (1,800) vemos en nuestra gráfica de eficiencia que tendremos una transmisibilidad del 1% aprox. Por lo que:

Ecuaciones útiles:


$$fn=188\sqrt{1/Deflexión(plg)}$$
 % $Transmisibilidad=\left[\frac{1}{(fd/fn)^2-1}\right]x100$ % $Eficiencia=100\%-\%$ $Transmisibilidad$

Sustituimos los valores:

$$fn = 188\sqrt{1/1.102"} = 188\sqrt{0.907"} = 188(0.952) = 179.058$$
 % $Transmisibilidad = \left[\frac{1}{(1800/179.058)^2 - 1}\right]x100 = \left[\frac{1}{(10.052)^2 - 1}\right] = \left[\frac{1}{101.054 - 1}\right] = \left[\frac{1}{100.054}\right] = [0.0099]x100 = 0.99\%$ % $Eficiencia = 100\% - 0.99\% = 99.00\%$


Esta gráfica se usa para determinar la deflexión estática necesaria en un sistema para obtener el porcentaje necesario de fuerza transmitida.

Para usar la gráfica siga los siguientes pasos:

- 1. Determine la velocidad rotacional mínima del sistema en revoluciones por minuto
- 2. Use este dato como la frecuencia disturbadora
- 3. Muévase verticalmente hasta tocar la recta inclinada que corresponde al porcentaje de transmisión deseado
- 4. Muévase horizontalmente hacia la izquierda para determinar la deflexión estática y la frecuencia natural del aislante.

EMA Spring S.A. de C.V.

Residencial Ángeles C.P 76178 Querétaro, México.

ventas@ema-spring.com

(+52) 442-571-2936

(+52) 442 501-5190

www.ema-spring.com